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The asymptotic  conditions for the nonrelativistic quan tum scattering of a particle 
by a center of force are derived in terms of a metric on the space of states on a 
complete orthocomplemented lattice. The flux of particles scattered into a cone 
per unit  incident flux, averaged over all displacements of the center of force at 
right angles to the axis of the incident beam, is expressed in terms of the 
differential cross section do/dto when the motion is classical, and in terms of the 
scattering amplitude f when the motion is quan tum mechanical. This enables 
the usual  identification do/dto = Ifl ~ to be made. 

1. INTRODUCTION 

The motivation for this work is a satisfactory derivation of the relation 
between the differential cross section and the scattering amplitude in the 
quantum theory of scattering. In the case of the scattering of a particle by a 
fixed center of force which conserves energy this is the well-known expres- 
sion 

do(O, ) 
d~ If(O'~)12 (1) 

where do(O, cp)/d~o is the differential cross section and f(O, r the scatter- 
ing amplitude. 

It has long been realized that the time-independent derivation of (1) 
found in most introductory textbooks on quantum scattering theory is 
inadequate. For in actual scattering experiments the beams are of finite 
extent, and the detectors are, of course, placed outside the beam. Further, 
modern experiments using such techniques as time-of-flight devices clearly 
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show the t ime-dependent nature of the scattering process, as do experiments 
using pulsed beams. For such reasons wave packet approaches to the 
quantum theory of scattering were developed, for example, in the book by 
Goldberger  and Watson (1964). 

Time-dependent  derivations of (1) usually assume that a particle is 
described by a wave packet, or equivalently, a ket vector. The wave packet 
may be assumed to have a cross-sectional area imposed by the source 
(Farina 1973), or the beam may be modeled by a stream of particles each 
associated with its own wave packet (Taylor, 1972; Amrein, Jauch, and 
Sinha, 1977). All these derivations assume that each particle is in a pure 
state. However, there is nothing in modem formulations of quantum me- 
chanics which requires that systems are in pure states, and the experimental 
conditions do not give us sufficient knowledge of the particles in the 
incident beam or pulse to enable us to make such an assertion. 

It  seems to the author that a satisfactory derivation of (1) must go back 
to the first principles of quantum mechanics. An increasingly accepted 
version of these principles is the "lattice of propositions," or "quan tum 
logic" (see, for example, Jauch, 1968; Piron, 1976; or Mackey, 1963). A 
general system of axioms has been proposed by Piron (1976), but in the case 
of the nonrelativistic quantum mechanics of a system consisting of a fixed, 
finite number  of mutually interacting particles it is sufficient to assume that 
the lattice of propositions corresponds to the lattice of closed subspaces of a 
Hilbert  space. Gleason's famous theorem then enables us to connect the 
probabilit ies for any state with probabilities for pure states. 

The plan of the paper is as follows. In Section 2 we discuss states on a 
complete, orthocomplemented lattice s that is, probabili ty measures on 
such a lattice. The results derived in this section apply equally to classical 
and quantum mechanics. In it we describe a metric on the convex set of 
states, so that the states form a metric space M(.~P). In Section 3 we derive 
some further results in the special case when s is the lattice ~,o(jf,) of 
closed subspaces of a Hilbert space ~'~', appropriate for nonrelativistic 
quantum mechanics. Some of these results are not used in the subsequent 
derivation of (1), but it is hoped they will be of interest in their own right. 
For  example, it is shown that any state may be approximated by a finite 
convex linear combination of pure states defined by vectors belonging to a 
dense subset of ~g'. 

From Section 4 onwards we deal with the special case of the scattering 
of a particle by a fixed center of force. In Section 4 itself some standard 
results of quantum scattering theory are extended to states other than pure 
states, position and momentum are discussed in Section 5, scattering into 
cones in Section 6, the translation of states in space in Section 7, and the 
momentum distribution in the initial state in Section 8. Section 9 contains 
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the derivation of the relation (77) which connects the flux o(<s into a cone 
with the probability of the final momentum being in ~'. A classical 

calculation leading to the expression (82) of o(~')  in terms of the differen- 
tial cross section do/dto is performed in Section 10. The same expression is 
shown to be true in Section 11 when the motion is quantum mechanical, 
provided the identification (1) is made, and our conclusions discussed in 
Section 12. 

2. STATES ON .s 

A state/z on a complete orthocomplemented lattice Z, a of propositions 
for a given physical system (classical or quantum mechanical) is assumed to 
be a probability measure on .LP. Thus # assigns to each proposition p in Z,a 
a probability P[p]/~]. The set M = M(.~ a) of all such states forms a convex 
set; that is, if ( /z,) ,~ I ( I  a countable index set) is a set of such states and 
{ Xi }~ ~ t is a set of positive numbers whose sum is unity then the expression 

P[Pl/~] = E )~,P[PII~,] (p~L: )  (2) 
i ~ l  

defines a state #. (2) can be written more briefly as 

/~ = E )~,/1, (3) 

If/~1 and /~2 are any two states the quantity 

d(/z,,/~=) = sup IP[pbz,]-P[pltt2]l (4) 
p~..~ 

is a well-defined number in the interval [0,1]. It is easy to verify that (4) 
defines a metric on M, so that M is a metric space. In fact such a metric on 
a classical probability space is known to statisticians as the "total  variation 
distance" (see, for example, Huber, 1981, p. 34). 

Proposition 2.1. Suppose (3) is valid and {Iz'i}i~t is a second set of 
states in 1 :1  correspondence with the states {/~,}g~t- If a state #'  is de- 
fined by 

~'= E X,~i (5) 
i ~ l  

then 

d(/z,/z') ~< Z )%d(/zi,/z;) (6) 
i ~ l  
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Proof. If  p ~ .if', 

[P[PII~]- P[p[t~'][ <~ ~., XilP[Pl~i]- P[ P[t-t~][ 
i ~ l  

-< E x,d(~,,,~,:) 
i E I  

Since the r ight-hand side is independent  of  p ,  the result follows from the 
definit ion (4). �9 

Corollary(2.1a). If # and # '  are as in (3) and (5), and if 
d(/-ti,/~'i) ~< e(e > 0) for all i ~ 1 then d(/~,/.t') ~< t. 

Proof This follows from (6) since Y'*i ~/)~i = 1. �9 
A symmetry, or automorphism, of s is a bijection W of .if' to .L# which 

preserves the lattice structure. It has an inverse mapping  W-~ which is also 
a symmetry .  Thus  W.L~ ~ = s = W-1.L~a. 

For  any # in M we can define a mapping  W/~ of  .L,e into R by 

P[piW~] = P[W-~pl~] Vp E .~ (7) 

It is well known,  and easy to verify, that W/~ is a state. 

Proposition 2.2. The mapping  of  M into itself induced by a symmetry  
W preserves the metric. That  is, if ~1 and #2 are states then 

d(  W~I. W,2  ) = d ( ~ .  , 2 )  (8) 

Proof 

d(W~I,WI~2) = sup IP[plWtz~]- P[plW~2]l 
p ~ ..~ 

= sup iP[W-~pl~L]  - P [ W - ' p i ~ 2 ] l  
p~,L, a 

= sup [P[Pll~]-P[Pll~2][ 
p ~  W - t . ~  

= sup ]P[pll2~]-P[p]ta2] I 
p ~ . ~  

=d(~,~2) 

A sequence (#,,)~=1 of  states in M converges to a state /~ in M if 
d (~ ,  #,,) ~ 0 as n ~ oo, this being the usual definition of  convergence in a 
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metric space. We can denote the limit # by l im,_~/z , , .  The following 
proposi t ion shows that we can interchange limit and sum for infinite convex 
linear combinations.  

Proposition 2.3. Let # be given by (3). Suppose further that for each 
i ~ I there is a sequence (/1i,. }.~176 1 __c_ M such that 

/z i = lim /zi, . (9) 
/1~OO 

Then if a sequence of states ( / . .  }.%1 is defined by 

/z. = E he#e.,, (10) 
i ~ l  

/z,, tends to p. as n ~ oo. That  is, 

tim ~ he#e, .= ~ h e lim t'i,. 
n ~ o o  i ~ l  i ~ l  n ~ o o  

(11) 

Proof. From (6) (Proposition 2.1) 

E 
e ~ l  

(12) 

The right-hand side of (12) is either a finite sum or a uniformly and 
absolutely convergent series by comparison with Ze~/hP  In either case we 
can let n ~ oo term by term on the fight-hand side of (12), when d(/& # , )  
--+0. �9 

If I is infinite and we terminate the sum in (3) we do not get a state. 
We can, however, approximate/z by finite convex linear combinations of the 
/*e as the next proposition shows. 

Proposition 2.4. Let # be given by (3) with I = N, the positive integers, 
and let n be a positive integer. For each i ~ N define he, . by 

he,,, = h e (13) 

Then a state # ,  is defined by 

~. = ~ X i . . F  i (14) 
i = 1  

Moreover,  d ( /z , / , , )  ~ 0 as n ~ oo. 
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Proof From (13) ~.i,. > 0 and ET=lhi,. =1,  hence (14) defines a state. 
Further,  for all p ~ s (2) and (14) show that 

P[pItLI-P[ptI~.] = ~ (Xi-7,,.,)P[pl/~i]+ ~ X,P[plI~i] 
i=1  i ~ n + l  

Since (13)implies  that h i < hi, . and 0 ~< P[pl/~i] ~<1 we find that 

[PtPlI~I-P[PIt~,]I <~ ~ (X , . . -A , )+  ~ X~ 
i ~ l  i = n + l  

= 1 - X i  + E hi 
i = l  i = n + l  

= 2  ~ h i 
i = n + l  

hence 

d(/1, /1.)~<2 ~ X, 
i = n + l  

and so d( / l , / in)  ~ 0 as n ~ oo. �9 

Proposition 2.5. Suppose { At }, ~ R and ( B, }, ~ R are two families of 
mappings  of  M into itself, and that further B, is isometric for all t in 
(that is, it preserves the metric on M).  If/~, /~x and/~2 are states such that 

a( ht~ , Bt~I) ~ 0 and d( A,I~, B,#2) ~ 0 

when t --* - oo, then #1 =/~2- A similar result holds when t ---, + oo. 

Proof 

a ( ~ l ,  ] /2)  = d (  B t ~ l ,  Bt]12) 

<<. d( Bdz 1, At#)+ d( A,t~, B,/z2) 

~O as t ~ - o o  

Hence d(/zx, ~2) = 0 and so/.q =/.t 2. �9 

Continuous Distributions. Suppose ~ is a family of propositions of the 
form " k  ~ ~ "  where ~ ranges over all Borel subsets of R N. If for # in M 
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there is a function P[. I~t] such that, for arbitrary ~ in R U 

P[k  ~RI / t ]  = fd[kl/ t]  dNk (15) 

then k has a continuous distribution P[' l / t]  in the state /t. The function 
P[" I/t] may depend on ~ as well as/t .  

Total Sets. We shall call a subset M 0 of M total in M if the set of finite 
convex linear combinations of states in M o is dense in M. 

Proposition 2.6. Suppose # is given by (3) and k has a continuous 
distribution P[.  I#~] in the state/t~ for each i in I. Then k has a continuous 
distribution in the state # and moveover 

P['t/t] = E Xf[.I/t,] (16) 
i ~ l  

Proof. If I is finite P[. I/t] can be defined by (16) and the result follows, 
so suppose I is infinite. Then (3) becomes 

~ =  ~ X i / t ,  (17) 
i : 1  

Since k has a continuous distribution in each state /t~ we can define a 
sequence ( P,[. [/t]}~-i of functions on .o~'l(R N) by 

e.['l/t] = ~ X,P['II~,] (18) 
i = 1  

It is easy to see that (P,[. I/t])~-i is a Cauchy sequence in .o~~ s)  and so 
converges to a limit in s N) which we denote by P['l/t]. Moreover, 
P,[.  I/t] converges almost everywhere to P[. I/t], and therefore 

e [ ' l / t ]  = ~ x , e [ ' l / tA  (19) 
iffi l  

It follows from (17) that 

oo  

P[k  ~ ~[/t]  = Y~ P[k  ~ ~l/~,] 
iffil  

oo  

= E x,fP[kl/t ,]d uk 
iffil  

(20) 

Since P,[. I/t] is bounded by P[.  l/t] the dominated convergence theorem 
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shows that 

fl[kl,]a'ck=,limoof ,,[kl/2]dNk= f x,P[kl/2,]dNk (21) 
i = 1  

by (18). The right-hand sides of (20) and (21) are equal, hence so are the 
left-hand sides. Thus k has a continuous distribution P[-I/2} in the state 12, 
and (16) follows from (19). �9 

3. STATES ON ,L#(Jd) 

In nonrelativistic quantum mechanics the lattice of propositions corre- 
sponds to the lattice L-a(,gff) of subspaces of a Hilbert space ,g'. That is to 
say, there is an isomorphism between propositions and ,s according to 

p ~ % ~ E~ (22) 

in (22) ~'? is the subspace corresponding to p and E: is the projection 
operator onto ~?. Clearly ~'p = E : ,~ .  

Each unit vector / in .,~ defines a pure s ta te /2( / )  according to 

P [ pl /2(f)]  = [[Epfl[ 2 (23) 

(23) will be written in the briefer form 

P [ P l f ]  = IIEjII  2 (24) 

Proposition 3.1. The distance d(/2(f) , /2(g)) between two pure states 
defined by the unit vectors f and g satisfies the inequality 

d( /2 ( f  ), ~ (g) )  <~ 2 l l f -  gll (25) 

Proof. For all p in ,s 

IP [ P l f  ] -  P[ Plg]l = I IIEpfll2 _ IIEpgl121 

= (llEpfll+ IIEpgll)lllEpfll-IIEpglll 

<~ 211Epf - Epgll 

= 211Ep(f-  g)ll 

< 21If - gll 

whence (25) follows from (4). �9 
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Gleason's Theorem. This well-known theorem states that every/~ in M 
can be expressed in the form (3) where, for each i in the countable index set 
I, /~, is pure. That is, given /~ in M there is a countable set ( f ,} i~s  of unit 
vectors and a corresponding set { h; }i ~ 1 of positive numbers, whose sum is 
unity, such that 

/~ = Z )~,/z(f~) (26) 
i ~ I  

Equivalently, 

P[Pl/~] = ]~ )~,e[plf , ]  Vp ~ ~ (27) 
i E l  

where Za = s Thus by Proposition 2.4 the pure states are total in M. 

Proposition 3.2. Suppose that/~ is given by (26) while/~' in M is given 
by 

P-'= Y'- )~iP'(f,') (28) 
i ~ I  

where ( f i ' ) ~  i is also a set of unit vectors. Then 

d(/.t,/z') ~<2 ~ ~-;IIL- f;'ll 
i ~ l  

(29) 

Proof. By (6) (Proposition 2.1), and then (25), 

d(/.t,/.V) ~< E Xid(/.t(f,.),,u(f,.')) ~< 2 E ? ' , l l f , -L ' l l  
i ~ l  i ~ l  

Proposition 3.3. Let a//be a linear manifold dense in 9f'. Then the set of 
pure states defined by unit vectors in ag is total in M. 

Proof. Suppose ~ is any state; then it can be expressed in the form (26). 
Since ~ is dense in , ~  it is easy to show that, given e > 0, corresponding to 
each unit vector f~ there is a unit vector .it,' in og such that IlL - f / l l  ~< �89 
Hence defining /~' by (28) the inequality (29) yields d(#, #')~< e. Taking 
account of Proposition 2.4 if 1 is infinite we see that finite convex linear 
combinations of states of the form ~t(fi) with f, in ok, form a dense set in 
M; that is, such states are total in M. �9 

A simple consequence of Proposition 3.3 is, for example, that any state 
is experimentally indistinguishable from a state which is a finite convex 
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linear combination of pure states defined by Schwarz functions if there is an 
e >  0 such that P[pl/~] is not measurable beyond an absolute accuracy of e 
for every p in s 

Induced States. Suppose W is an isometric operator on .~ .  Then W 
induces a mapping of M into itself if we define, for/~ in M, W/.t by 

W~ = E Xi~(Wf,) (30) 
i ~ l  

where /.t is given by (26). For IIWf, ll=llf, l l=l  for each i in I and 
Ei ~ iXi = 1, hence (30) defines a state. 

A special case occurs if W is unitary. Then W induces an automor- 
phism of .oc/'(~) into itself according to 

EB,~ ~ WEp,~g a , Ep ~ W E p W *  (31) 

The inverse mapping is 

Ep.g" "~, W*Epg~, Ep ~ W*EpW (32) 

If we denote the proposition corresponding to WEp~ by Wp, W*Ep 
corresponds to W-[  p, and for all p in ..~/', 

e[plW ,] = E x , t le .wf ,  tl 2 
i ~ l  

= ~ X,IIW*EpWf~II 2 
i ~ l  

=P[W-lpl~t] 

which is (7). Hence by Proposition 2.2 the mapping/~ ~ W/z is isometric. 

Proposition 3.4. If (A .  }.~1 is a sequence of isometric operators on ~ '  
which converges strongly to an isometric operator A on ~ then the 
sequence ( A . ~  }.~ ] converges to Ate. 

Proof From (29), with f, and f /  replaced by Af~ and A,,f,, respec- 
tively, 

d(A~, A . # )  ~< 2 ~ Xit]Af, - A.f,J l (33) 
i ~ I  

Now when n ~ ~ A,f ,  ~ Af, for each i in I, and IIA L - a, ,f ,  ll < Ilaf, l[+ 
IIA,~II < 2, so if the fight-hand side of (31) is not finite then it is uniformly 
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convergent. We can therefore let n --* ~ term by term, so d(A~t, A~ t )  --, 0 
as n ~ o 0 .  �9 

Proposition 3.5. If (At}r~  n is a set of isometric operators on ~ and A 
is another  isometric operator on ~ such that 

s-lim A , =  A 
t ~ + ~  

then, when t ~ + oo, d(A~t, At# ) ~ 0 for any # in M. 

Proof As for Proposition 3.4. 

Proposition 3.6. Suppose ( A , } t _  n and (B,}t~ n are two families of 
isometric operators on .~ .  If, for all f in ~ ,  

then 

lim IIh,f  - B, fll = 0 
I ~ --00 

lim d (  a t ~  , ntbt ) = 0 
I-.-. - o o  

for any ~t in M. 

The same is true when t ---, + ~ .  

Proof By (29) with f~ and f /  replaced by A,f, and B,~, respectively, 

d(Att~, B,/~) ~< 2 E ~,+lla,f~ - g, Lll 
i ~ l  

The proof  now proceeds as for that of Proposition 3.4. �9 

4. THE ASYMPTOTIC CONDITION 

From now on we shall assume that our system consists of a single 
particle moving under a central potential. The Hilbert space ~ is now 
Aa2(R3), and we denote the evolution operators for the free and perturbed 
motion by U, and V,, respectively, where t is the time. We assume that the 
potential is sufficiently well behaved for all the results of elementary 
scattering theory to be valid, such as the existence of the wave and 
scattering operators, and asymptotic completeness (Amrein, Jauch, and 
Sinha, 1977). The results of Section 3 enable us to easily describe the 
asymptotic condition for potential scattering, which we do in this section. 
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The  initial (freely moving)  state at t ime t has the form (26) where each 
f,. evolves under  U,. If  # is the state which would exist at t = 0 if there were 
no in teract ion the initial s tate at t ime t is U,/t, and given by 

U,~ = ~ ~.,/z(UJ,) (34) 
i ~ l  

The  wave opera to r s  f~ + on . ~  are defined by 

f~• = s-tim Vt*U ~ (35) 

and  as s ta ted above  we assume that  these limits exist. Since f~+ are 
i sometr ic  opera to r s  on W we can define states f~ + ~t [cf. (30) with W = f~ • ] 
which, under  the full evolution opera tor  V,, evolve into the states V,~2_+/.t 
given by 

V,~2•  Y' )~/~(V,~2 • f,.) (36) 
i ~ l  

Proposition 4.1. For  any # in M, 

tim d ( ~ ,  V,~_+~) = 0 (37) 

Proof F r o m  (35), if f ~ .A v, 

lim IIU, f - Vfl2 • f l l  : 0 
t ~ __+ ~ 

Hence  the result follows by Proposi t ion 3.6 with A t = Ut ,  B, = V,f~ • both  of  
which are isometric.  �9 

The  fol lowing proposi t ion shows that f~_/~ is the only state having the 
a sympto t i c  p rope r ty  expressed by  (37) with the lower sign. Tha t  is, V,f~ _ ~t is 
the one  and  only  state of  full mot ion  which is a sympto t ic  to U,~t as t ---, - oz. 

Proposition 4.2. Suppose/~1 and ~z are states such that  

and 

as t --, - oz. Then  ~t =/-t2- 

Proof A p p l y  Proposi t ion 2.5 with A, = U t, B, = V,. �9 
Propos i t ions  4.1 and 4.2 show that  ~_/~ is the unique state asympto t ic  

under  1I, to the initial state Ud~. 
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Scattering Operator. The scattering operator S on ~ is defined as 

s = a * a _  (38) 

Under  the assumptions mentioned above it is unitary. It therefore induces 
an automorphism of M according to 

Sl~ = E Xil~(Sfi) (39) 
i ~ l  

[cf. (30)1. 

Proposition 4.3. For any state ~t, 

lim d(UtSl~, V t a _ # ) =  0 (40) 
1 4 + 0 0  

Proof If f ~ ~r and recalling that asymptotic completeness is as- 
sumed, 

IIU, S f  - v ,~_  fl) = II v,*u, a f  - ~_ fll = IIV,*U,~_ ~_ f - f~_ fll 

II~ + ~*+ fl_ f - ~_  fl l  = ll~_ f - fl_ fll  = O 
( t ~  + ~ )  

Since A t = U t S  and Bt=  Vtf~_ are isometric operators on ~ the result 
follows from proposition 3.6. �9 

Suppose Ut~ 1 and Ut/~ 2 are asymptotic to V, fl_ ~ when t ---, + oo. Then 
d(Vtfl_/~, Ut/~l) and d(Vtf~_ #, Ut~2) both tend to zero when t --* + oo. (.Jr is 
isometric, hence by Proposition 2.5 ~1 = ~t2. Thus UtStt is the only state 
asymptotic to Vtfl_ tt as t ---, + oo, and so is the final state of free motion. 

Proposition 4.4. If p ~ s then, for any/~ in M, 

lim P[pIU,  SI~] = lim P[plV,  fl_/~] (41) 
t ----~ + OO t--* + O0 

provided either side exists. 

Proof. 

[P[ plV, S t t ] -  p [ plVtf~_ ~]1 ~ d(  UtSl~, Vtf~_ I~ ) 

If t ~ + oo the right-hand side tends to zero by (40), hence if either side of 
(41) exists so does the other, and they are equal. �9 
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5. POSITION AND M O M E N T U M  

In this section we consider the position and momentum of the particle 
when its motion is free. Let r be the position vector of the particle relative to 
a fixed origin O and k be its wave vector, so that its momentum is hk. If the 
particle is in a pure state At(f) then r has a continuous distribution ]f(.)12 
so that 

P [ r  ~ ~ ' l f ]  = flf(r)l 2d3r (42) 

If F is the Fourier transform on .,~ k has a continuous distribution I F f ( . ) l  2 
so that 

P [k  ~ 9~lf ] = flFf(k)l 2 d3k (43) 

Let c~ be the characteristic function of .~, and denote by C~ the 
operator  of multiplication by c~. Thus 

C~f(r)  = c~ ( r ) f ( r )  (44) 

C~ is the projection operator which projects onto the subspace of functions 
of LPz(R 3) which vanish almost everywhere outside 2 .  In terms of C~ 
equations (42) and (43) can be written 

P [ r  ~ ~ [ f ]  = I ICMll  2 (45) 

e l k  ~ ~ [ f ]  = I IC~Ffl l  z = II F * f ~ F f l l  z (46) 

C~ is the projection operator corresponding to the proposition r E .~, 
and so we can write 

E, ~ s~ = C~ (47) 

F*C~F is also a projection operator. It projects onto the subspace 
F,C~F.~( j~ , ,  = s R 3)) of functions in .La2(R 3) whose Fourier transforms 
vanish almost everywhere outside 2 .  Thus 

Fk ~ ~e = F*CjeF (48) 

and so (45) and (46) are equivalent to 

e[r  c ~ l f ]  = IIE,~MII 2, P[k ~ ~ l f ]  = IIEk  fll 2 

These results must, of course, be the case, since for a pure state defined by a 
unit vector f P [ P l f ]  = I Ig j I I  z 
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Now r and k have continuous distributions in pure states and by 
Gleason's theorem every state/ t  has the form (3) with ~ equal to a pure 
s ta te / l ( f , )  for each i ~ I. 

It follows from Proposition 2.6 that r and k have continuous distribu- 
tions in every state/z. Further, 

Pi t  ~ l t ~ ]  = E X,e[r ~ l ~ ( f , ) ]  = E X,IICM, II 2 
i ~ l  i ~ l  

P [ k ~ I / L ]  = E x , e [ k ~ l t x ( f , . ) ]  = E X,IIF*C~Ff,  II 2 
i ~ l  i ~ l  

(49) 

(50) 

If the particle is moving freely 

]CgeFUJ~(k) 12= C~ (k)exp( - t h 2 ~  ) Ff~ (k) 2 

= IC~e(k) Ff~ (k) 12 

-- IC~Ff,. (k) 12 

SO 

Thus 

IIC~FU, LII 2 = IIC~FLII 2 

IIF*fgeFUtfill 2 = IlF*CaeFfill 2 

and so from (50) 

P[k ~ ~1~] -- ~ X,IIF*C~FU, f, ll 2 = P[k E ~lU,~] 
i ~ l  

(51) 

Equation (51) shows that the probability distribution of momentum for a 
freely moving particle is independent of time, as is to be expected. 

6. SCATTERING INTO CONES 

Suppose the particle is moving freely. Let ~ denote a cone, vertex 0, 
and let - ~' denote the reflection of this cone in 0. It can be shown (Amrein, 
Jauch, and Sinha, 1977, p. 125) that if f ~ ~ then 

lim P [ r E ~ I U J ]  = e [ k ~  •  (52) 
t --* + c~ 
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That is, 

Now 

lim IIC~U, fll 2 = IIf*C+~cFfll 2 (53) 
t ~ •  

e [r  ~ ~'lU, t~] = ~ ~,IIC~U,~II 2 (54) 

e [ k  e + ~'ltL] = ~ X,IIF*C• 2 (55) 

Since the series (54) is uniformly convergent we can let t ---, + ~ term by 
term and then use (53) and (55) to obtain 

lim e [ r  s ~lu,~]  = P[k  ~ + ~'1~] (56) 

(56) shows that (52) is true for any state t~. 
Suppose now that the interaction is present. The cone ~ is defined by a 

detector, and the probability that the particle enters the detector after the 
collision is therefore the probability of the particle ending up in W when 
t ~ + co. This is 

lim P [r E ~glV,~2_/~ ] (57) 

provided the limit exists. Now by Proposition 4.3 d(UtSil, Vt~2_l~ ) ~ 0 as 
t ~ + ~ ,  and by (56) 

lim P[r~IGS~]= P[k ~elS~] 
I ~ q - ~  

Hence by Proposition 4.4 the limit (57) exists, and moreover 

lim e [ r  ~ ~ l v , ~ _ ~ ]  = P[k  ~ ~IS~] (58) 
t ~  q-OO 

(58) states that the probability of the particle being detected after the 
collision is the probability of the momentum being in the cone cg in the 
final freely moving state UtS #. 

If (50) is applied to this case we find that 

e [ k  e ~lS~t] : ~ X~ll f~Faf ,  II 2 (59) 
i ~ l  

7. TRANSLATION OF STATES 

Suppose in the first place that the motion of the particle is classical. 
The lattice .~e of propositions is in 1 '1  correspondence with the Borel 



Scattering Theory, Cross Sections, and the Lattice of Propositions 1157 

subsets of phase space, the space of 6-vectors (r,p) where r is the position 
vector and p = hk  is the momentum vector. If  r varies over a Borel subset 9~ 
of R ~ and p varies over another Borel subset 60 of R 3 we obtain a typical 
element 5 ~ 5  ~' of SO, where # t ~  is the direct sum of ~ and 5". 

If  T~5~ is the translation of ~ through a vector displacement a we can 
define a space translation T~ of SO in the classical case by 

(60) 

Since the proposit ion r ~ ~ corresponds to ~ g R  3 while the proposition 
p ~ 6" corresponds to R 3 �9 60, we have 

while 

T~(p~  5 a)  ~ T . ( R 3 ~ 5  a)  = (T~R3)~5  a = R 3 ~ 5  a ~ p ~  6 a 

Thus proposit ions concerning the possible values of the momentum are 
invariant  under T a. 

The automorphism T~ on SO induces an automorphism Ta on M(SO). 
Since the inverse of T~ is T ~ we have, for all p in S ~ 

P[pIT~]  = P[T_.plt*] (61) 

(61) shows that, for any ~ g R ' ,  

P [ r  ~ ~[T~/,] = P [ r  ~ T _ , ~ I g  ] (62) 

I f  r has a probabil i ty distribution P[.  l/x] (62) can be written 

fP[rlT,~ld3r = ] e[rlt*] axr 
T_l~ 

Since r ~ T _ ~  if and only if O = r + a  ~ ~ we have 

f P[rl ld'r=f [p-al l 'p 
T_,~? 

and so (63) gives (since ~ is arbitrary) 

P[r lT,  t*] = e [ r -  air*] 

(63) 

(64) 



1158 Farina 

Let us now consider the quantum mechanical case. For any p in 

P[PI~] = ~ X,P[pIf~] (65) 
i ~ l  

The state Ta~ must be defined by the expression, for all p in ..~, 

P[plZd~]= e[T_,pltx] (66) 

If p ~ r ~ ~' then we naturally require T_,p r r ~ T _ ~  and so (65) and 
(66) yield 

P [ r  ~ ~lT~p.] = P [ T . ( r  ~ .~)lt~] 

= P[r ~ T_a~l~ ] 

= ~ X,f  If i ( r) j2d3r 
i ~ l T-a'9~ 

Since r ~ T _ . ~ '  r p = r + a  ~ ..~ we can take O as new variable of integra- 
tion to obtain 

P [ r  ~ S~lT'~tl = i~ ,  XifJfi(p-a)12dxp (67) 

If we define T. on ~ by, for any f in 9ff 

7".y(r) = f ( r -  a) (68) 

(67) becomes 

P [ r  ~ ~'lTd~ ] = ~ X,IIC~Tj, II 2 (69) 
i ~ l  

(69) can be taken as the definition of T~ t - - t h e  only definition consistent 
with (66) and the interpretation of T_~ (r ~ ~ ')  as r ~ T _ ~ .  

It follows that 

P[k ~  lTat ] = •iP[k ~  IT.L] 
i ~ l  

= ~ X,liC~,FTaLII 2 (70) 
i ~ l  
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Now it is easy to see from (68) that 

FTa~(k)=exp(- ik .a)F~(k ) 

hence 

so by (70) 

IIC~FZ~f~ll z -- f lFTafi(k)12d3k = IIC~Ff, II 2 

P [ k  ~ ~[T~#] = ~] X, l l f~Ff i l l  2 
i ~ l  

(71) 

= P[k ~ ~ ]~]  (72) 

Thus the probabil i ty of the proposition k ~ ~ in the state T~/~ is the same 
as its probabil i ty in the state/~, for every/~ in M. We therefore conclude 
that k ~ ~ is invariant under T~. 

8. T H E  INITIAL STATE 

We suppose, as usual, that initially the particle is projected in the 
positive z direction. This enables us to assume that the initial state must 
satisfy certain conditions, which we now examine. 

Provided the incident pulse is well collimated we can suppose that the 
momen tum of the incident particle must lie inside a closed cone ~0 of small 
acute semivertical angle a whose vertex is the origin and whose axis is the 
positive z axis. We can also assume that the incident pulse is very nearly 
monochromat ic  in energy. This means that we can assume that the magni- 
tude hk of the momentum must lie between some positive number  hk 1 and 
some second, slightly larger, positive number hk2, so that 

0 < k 2 - k 1 << k 1 

Let 6'~t2 be the closed spherical shell 

and suppose that ~ is a region of R 3 lying entirely outside 3a12 N .:,Y'. Then 
P[k  ~ ~g'lUt/~] must vanish for t ~ -  o0, and so by (51) P[k ~ .Yl[#]= 0. 
Hence by (51) 

E ~, l lC~gf,  II 2 = 0 

For  each i ~ 1 k i >  0, hence IIC.,rFfAI--0 and so Ff/ vanishes almost 
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everywhere in .gf ~. It follows that Ff,. vanishes almost everywhere outside 
6p12 ~ &e" for each i in I. 

9. CROSS SECTIONS 

We have supposed that the incident particle is projected toward 0 in 
the positive z direction. Let us suppose further that this experiment is 
repeated N times per unit time, and the number of particles N(r~) emerging 
per unit time into a cone r163 of vertex 0 is counted- - the  flux into rg. For 
large N the flux N ( ~ )  will be N times the probability that the particle 
emerges in rg. Since hk is the momentum this probability is P[k ~ ~IU~S/z] 
= P[k ~ c~IS#] where UtS # (t - + oc) is the final freely moving state. This is 
true also when the particle moves according to the laws of classical me- 
chanics, since after the collision the particle trajectories are straight lines. 

Suppose that the center of force producing the scattering is at 0, and let 
the center of force be translated through a vector displacement a = 
(a.,.,a,,,O), so that a is perpendicular to Oz. This is equivalent to the 
translation of the incident beam (or pulse) through a vector displacement 
- a ,  so that the state/~ becomes T a g .  The initial (freely moving) state is 
now U~T_,/z = T_~Ut/t (since T_ ,  commutes with the unperturbed Hamilto- 
nian). The flux into c6 after the collision now depends on a, so let us denote 
it by N(rrla). Then 

N(rgla) = NP[k ~ ~gIU~ST_j~] 

= NP[k ~ rglSral~ ] (73) 

by (51). 
Let ~ be a region of the plane z = 0, of area Aso, and denote by 

N~(rg)  the average over 6 ~ of N(rgla). Then 

. ~ ( ~ )  = A~l fN(~la)d2a (74) 

From (73) and (74) we obtain 

= NA l f f [k   lSr_,.ld2a (75) 

If Fse is the proportion of the incident pulse (or beam) before translation 
which passes through 6 a, F~,NA~ 1 is the average incident flux across 6 a, 
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which we shall denote by is~. Dividing (75) by i~e we obtain 

N'~ F~l f f [k~cg]ST  ,#]dZa -~--f = (76) 

When 5 a is allowed to expand to fill all of R 2 the integral over a in 5 p 
on the right-hand side of (76) cannot decrease. It therefore either tends to a 
limit or tends to infinity, while F~,---1 from below. It follows that the 
left-hand side of (76) tends to a limit if, and only if, the integral over 5 a 
tends to a limit. If this is the case we denote the limit [of either side of (76)] 
by o (~) ,  and then 

o(v) = f P[k ~ cglST_,,it]d2a (77) 

The quantity o(cg) clearly has the dimensions of area. 
It is interesting to examine the nature of o((g) in the special case when 

the incident beam is uniform and 5" is its cross section through 0. In 
practice we can usually assume that the range of the interaction is small 
compared with the dimensions of 5 a, so that edge effects can be neglected. 
It follows that the scattering is uniform over 5", and zero outside 5 a. Hence 

{ P[k ~ V[S/~] (a ~ 6f) 
P [ k E c g l S T _ d l  ]= 0 ( a ~ 5  a) 

In this case, therefore, (77) yields 

a(cg) = f f [ k  ~ cglST_,#]d2a 

Further F~ =1,  and if a ~ 5", N(Cgl a) = NP[k ~ cglST_al~ ] is independent 
of a, and equal to N ( ~ ) =  NP[k ~cglS#], while is,,= 1, the flux of the 
incident beam. Thus by (74) .Nse(cg) = N(Cg) so (76) implies that 

N(Cg_..~) _ flux of particles into cg 
I incident flux 

(78) 

If ~ is a cone of small semivertical angle, subtending a corresponding small 
angle A60 at 0, (78) can be approximated by 

a~ (79) 
, , ( v )  = d,,,  

where do/dw is the differential cross section. 



1162 Farina 

(79) relates o(c~) to the differential cross section. It should be em- 
phasized that both (78) and (79) represent approximations in ideal cases, 
and in what follows neither will be assumed to be necessarily valid. Nor, 
indeed, will the idealizations on which they are b a sed Iu n i fo rm i ty  of the 
incident beam and negligible edge effects--be assumed. Our starting point 
will be (77). 

10. CLASSICAL CALCULATION 

In this section we shall examine the scattering of a steady beam of 
particles by a center of force if the particles obey the laws of classical 
mechanics. We shall use (77) to obtain an expression for o ( ~ )  in terms of 
the differential cross section. 

Let the differential cross section for scattering of a particle of momen- 
tum hkm o (I,%1=1) into momentum hk~ (Io> I =1)  be denoted by do(k; 
~o -+ t,~)/do~. We shall suppose that the incident beam has a volume density 
of flux I (k t%,a)  at the point a of 6". That is, if (k~o, k2dkd2,.,o) = 
(k0, d3ko)  is a volume element of k 0 space then the flux of particles with 
momentum in this volume element is 

/ ( k 0 , a ) a 3 k 0  = I(kt~o,a)kEdkd2t~o 

in the direction of k 0. Provided this flux varies by an negligible amount over 
the region of interaction this produces a flux of scattered particles into the 
solid angle d 2~ of amount 

I( k~o,a) k2 dkd2~o-~ ( k; ~0 "* ~ ) d2~ 

hence the total flux into c~ is 

f/ , fo k dkf ,od2, oI(k, o,a) (k; 
The probability P[kw ~ c~IST,Iz ] of a particle being scattered into the 

cone ~ if the center of force is at a is this flux divided by the number of 
particles incident in unit t ime-- tha t  is, by N. Hence 

P[ k~ ~ c~Isr .lz ] 

(80) 

Now the number of particles with momentum in the volume dement  
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(kt%, k2dkd2t%) which cross an element d2a of ~ in unit time is 

I(  kt%, a)k 2 dkdEt% d 2a cos 00 

where 00 is the angle between t% and the positive z direction. Hence 

k 2 dk a cos aofI(k,%, a) a 2a 

= the number of incident particles with momentum 
in (k~o, k2dkd2t%) which cross the plane z = 0 in 
unit time 

= N times the probability of the momentum of the 
incident particle being in ( k~ o, k 2 dkd 2 ~o) 

= NP[k~ol#] k2dkd2t% 

where P[.I/~] is the probability density for k 0 in the initial state Ud~. 
Therefore 

f I ( k u o , a  ) d2a = NsecOoP[k~ol~] (81) 

By (77) and (80) 

~  ~'  ~o ~% d2t%l(kt%,a)~.w (k ; t%_ ,  ~ ) d o  

If we use Fubini's theorem to interchange the integrals and then use (81) to 
carry out the integration over a we obtain 

The existence of the integrals, and the validity of Fubini's theorem, is 
assured if (i) I(-,-) belongs to Z/'I(Rs), (ii) X(.,a) has support in :12 n ~'o 
for almost all values of a, (iii) the semivertical angle a of ~o is acute, (iv) 
do(k; ~o ~ t,:,)/dco is essentially bounded for k ~ [kl, k2], t% ~ ~o and 

~ ~.  The conditions on ~o and do/d~ are essential, for (82) shows that 
without either of them o(~') could be infinite. 

11. QUANTUM CALCULATION 

We shall now evaluate o ( ~ )  from (77) when the motion is quantum 
mechanical. Firstly we deal with the special case when /L is a pure state. 



1164 Farina 

Then  

P [ k ~ I S T _ , t ~ ]  = P [ k ~ W I S T _ . f ] = I I C ~ F S T _ a f l l  2 (83) 

for some unit  vector f in s ). 
If ~ n ~ o = O  (so that no unscattered particles emerge in c~), 

IIC~eFT_,fII 2 = P[k  ~ CglT_,f ] = P[k ~ Wlf]  [by (72)] = 0. Hence if R = 
S - 1 ,  

e [ k  ~ cglST_, f  ] = IIC~FRT_,ZII 2 

= fo~k2dk  f d Z t o l F R T _ , f ( k t o ) l  2 (84) 

where kto = k, Itol = 1. 
We shall now formally evaluate F R T , f ( k t o )  using the s tandard 

formulas  of scattering theory for the S matrix [see, for  example,  equat ion 
(7.4.11) of Farina,  1973], and then assume the validity of the final result. 
We have 

F R T _ , f  ( kto ) = ( k to lRT_, l f  ) 

= fo ~ k ~ ak0 f d %< ktol R Iko,.,o> < kotool T_,I > 

(h2k ~ h~ko~)( h 2 )  
= f 0  k 2 d k ~ 1 7 6  2m 2m -4r 

• f ( k ;  to o ~ to)FT_, f (k too)  

where f ( k ;  too --* to) is the scattering ampli tude when the momen tum of the 
part icle changes from hkto o to hkto. That  is, 

F R T _ , f ( k t o ) =  ~---~ f d2 too f (k ; too~ to )FT_ , f ( k too)  (85) 

We shall assume that (85) holds rigorously, at least for values of k, to, and 
to o, for  which f ( k ;  too --* to) is an .s 2 function of too and to. 

If we apply  (71) to T _ , f  we see that (85) becomes 

ik 
FR T _ a f  ( k to ) = Tg~ f d %o f ( k ; too -~ to )exp( ik too. a ) Ff ( k too ) (86) 

Now we assume that I f ( k ; t o o ~ t o ) l  is bounded  if k ~ [ k x ,  k2], 
to ~ c.g, too ~ ~o, so that it is certainly a square integrable funct ion of to over 
r and of  too over  cgo. It follows that if to ~ cg then 

f ( k; too ~ to ) Ff(  ktoo) 
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is an ~2 function of kto 0. We can therefore use Lemma 7.17 of Amrein, 
Jauch, and Sinha (t977, p. 284) to obtain 

fa2a l l  fa2~oexp(iktoo.a)/(k;too-->to)F/(ktoo) 2 

= f a2toolj(k;to0 ~ to)121Ff(k~o)12k-2secSo 

where, as in the last section, 0 o is the angle between too and the positive z 
direction. It therefore follows from (86) that 

f d2alFRT.f( kto)]2= f% d 2too i f  (k; to o --* to)]2]Ff(ktoo) 12sec 00 

since Ff(ktoo) = 0 if to o ~ %.  The fight-hand side is integrable over to in 
and k in [k t, k2], and vanishes if k ~ [k 1, k2], hence 

o ~  - 2 

fo ;'~ak f/~tofd~alF"r "f('~:to)' 

= fo~k2akf dztof d2toolf(k;too--*to)iZiFf(kt%)12secOo te % 
By Fubini's theorem the repeated integral on either side can be inter- 
changed, so by (84) fd2a P[k ~ cglST_,t~ ] exists, and moreover 

f d2a P[k ~ ~glST_d~] 

so= s% = 2to k~ak a~toolS(k; <%---> to)l~lFS(ktoo)l~secOo 

(87) 

By (77) the left-hand side of (87) is o(c~), which therefore also exists. 
Further, since we have a pure state/2 defined by f the probability density 
function in the initial state is given by 

P[ktoo[/2] = IFf( ktoo)l 2 

Hence (87) can be written 

o(cg)=f~,d2to[fo~k2dkf%d2tooP[ktooll~]lf(k;o~o---,to)12secOo] (88) 
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This is identical to the classical result (82) if we put 

d---~~ too ~ to) ---If(k; too --' to)l 2 
dto 

Farina 

(89) 

In fact (88) is true for any state. Firstly suppose that # is given by the 
Gleason expansion (26) where 1 is finite. Provided cg n rg o = ~ we have 
P[k  ~ rglT_ap ] = P[k ~ ~'1~] [by (72)] = 0 whence GeFT_af ~ = 0 for each i 
in 1. Hence using (87) with tt replaced b y / ~  

f d2a P [ k  ~ rglST_,t~ ] 

= E X,fd2aP[k~C~lST-atz,] 
i E l  

[by (26); I is finite] 

= i~,  ~-" X,~ed2tof~k2dkf% 

= 2to k2dk d2toolf(k; too ~ to)12secSo ~ XilFfi(ktoo)l 2 
i ~ l  

= fwd2to fo~k2 dk f%d2t%lf( k; too ~ to )12secSoP[ ktooll.t ] 

By (77) this is identical to (88). 
We must now establish (88) when the index set I in (26) is infinite. 

Since If(k;  too --" to)l 2 is bounded for k ~ [k x, k2], to ~ rg and too ~ ~0, 3M 
> 0 such that, for these values, If(k;  too --* to)l 2 ~ M. Then from (87), since 
sec 0 o >/sec a where a is the sernivertical angle of ~o, for each i and 1, 

f d 2 a p [  k ~  cgIST_.#,]<~ Mseca fd2~ fo~k  2 dkf%d2toolFf,.(k~o)[ 2 

= Msec,~f d2tof d3kolFL(ko)l 2 

= M s e c a f d 2 t o  (since IIFfill =1)  

4 ~rM sec a (90) 
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Since/~ is given by (26) with I infinite, 

oo 

P[k ~ ~[ST_,p] = E Xip[k ~ c~lST-al'ti] (91) 
i = 1  

Hence if ~9 a is a bounded region of the plane z = 0 

oo 

f d 2 a  e[k ~ ~elsr_. . ]  = E x,f d2aP[k ~cglST_.#il 
i f f i l  

~< 

(since the series converges uniformly by comparison with F.~=lX i = 1) 

X,f d2aP[k ~(~IST_.I~,I 
i = l  

Now 

[by (87). Thus from (77) 

oo 

o~ ~ ) - , ~  ~,fj~ o fo~ ~ ~q~foo ,~ /~  oo ~ o), ~ 

X IF f/(k~0 o)12sec 0o (92) 

oo 

P[k,%ltz] = ~ XilFf~(ko~o)l 2 
iffi l  

~< ~ X,(47rMseca) [by (90)] 
i = l  

= 47rM sec a 

This shows that fP[k ~ ~IST_,I~] dRa exists, and hence by the dominated 
convergence theorem (91) may be integrated term by term to give 

f d2aP[k ~ ~ ' I S T _ , ~ ]  = E X,f d2ap[ k ~[ST-a#i] 
i f f i l  

o o  oo 

= E x,f a2~f k2akf a~o 
i = l  " ;~  "0  "qfo 

x I f ( k ;  ~o --' ~)12lff;(k~o)lZsecOo 
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may be integrated term by term over k in [0, oo) and ~o ~ ~'o, by the 
dominated convergence theorem. Since If(k;  too ---, w)[Zsec 0 o ~< M sec a the 
same series can be multiplied by If(k;  ~0 ~ t~ 2sec 0o and integrated term 
over k in [0, oo) and ~o in fro to yield 

fo~k~dkf a%o I f (k ;  "~o ---' ~)[zP[k~%lt~]sec 0o 
% 

/% = X, k2dk dZ~olf(k; ~o--'~)121Ff~(k~o)12secO0 
i = l  

Since 

(93) 

/o \ k2dk d2'"olf(k; ~o ---' ~)121Ff~(k~o)lZsecOo 

/o \ ~< M s e c a  k2dk d2t%lFfi(k~o)l z 

= Msecafd3ko IFf,(ko) 12 

= Msec a 

the series on the right-hand side of (93) is uniformly convergent, and so can 
be integrated term by term over w E cg to give 

f dz'"l t o  % d2~~176176176 

co  oo 

= ~_, x , f  d2tof k2dkf d2t%]f(k; tOo.-->o~)12lFf~(kwo)12secOo 
i = l ~ 0 " c~ o 

By (92) the right-hand side equals o(cg), and so (88) is again obtained. 

12. DISCUSSION 

We have described a metric (4) on the convex set of states M on a 
complete orthocomplemented lattice. This enabled us to describe the 
asymptotic conditions of quantum scattering theory in the case of a particle 
moving under the influence of a center of force. We then noted properties 
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that  the initial s tate of  a particle undergoing such a scat tering process must  
have. The  flux o(cg) of particles per  unit incident  flux into a cone cg after  
the scat ter ing was related to an average of the probabif i ty  of  the final 
m o m e n t u m  being in cg, the average being over  all posi t ions of  the center  of  
force in a p lane  at right angles to the mean  direction of incidence of the 
par t ic le  (77). This  enabled us to relate o(rg)  to the differential cross section 
in the case of  classical scattering (82), subject to the flux of the incident  
b e a m  vary ing  by  a negligible amoun t  over the interact ion region. We then 
obta ined ,  wi thout  this assumption,  the expression (88) of  o ( f f )  in terms of 
the scat ter ing ampl i tude  when the particle obeys quan tum mechanics.  
Equa t ion  (88) was obta ined on the assumpt ions  that  (i) the initial m o m e n -  
tum belongs to a cone cg o of acute semivertical  angle a;  (ii) the magni tude  
of  the initial m o m e n t u m  is conf ined to a closed finite positive interval 
[kl, k2] with zero as an exterior point;  (iii) the scat tering ampl i tude  is 
b o u n d e d  (or  at least essentially bounded)  for k E [kl ,  k2] , to ~ cg, too ~ W0; 
(iv) ~' n % = o .  

(iv) is necessari ly true for a wel l -performed exper iment ,  since wi thout  it 
we shall obse rve  unscat tered part icles in the detector.  (i) is also necessary,  
since wi thout  it the f ight-hand side of  (88) could become  infinite for  certain 
choices  of  P[-l/~]; (iii) is also necessary for the same reason. (ii) is not  really 
restrictive, since in an actual  exper iment  the particles will usually, in 
pract ice,  have  posi t ive lower and upper  bounds  on their energies. 
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